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1. INTRODUCTION

In a number of papers uniform approximation of e- x on [0, (0) by
rational functions has been investigated. Because of its importance in certain
numerical methods, SafT et al. [4] studied the degree of approximation by
functions of the form p(x)(x + nq)-n, q >0, P polynomial of degree at most
n. The method used in [4] gave the best order of approximation for q = 1. In
this case it was shown that the order is at most O(2- n

).

Recently, Kaufman and Taylor [3] commented on this result. Among
other things they asked if the choice q = 1 is optimal. In this paper we shall
prove a theorem that shows that it is not. The best choice is q = 1/Vi and
then the degree of appFoximation is essentially of the order (Vi + I)-n.

2. FOMULATION OF THE RESULT

We give a result that determines the asymptotic behaviour of the degree of
approximation of e- x on [0, (0) by functions of the form p(x)(x + an)-n, for
any sequence of an > O. For reasons that will be clear later we prefer to
rewrite an as nqn'

For a sequence Q = (qn)'(' of positive real numbers let

Here and in the sequal IIn denotes the class of polynomials of degree at most
n. Furthermore, let

pn(Q) = inf{ sup Ie- x - r(x)l: r E Rn(Q)}·
x>o
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The following function G will be central:

I
z - 1 IG(z, q) = log -- + q Re z2,
z + 1

In stating our theorem we need another

q > 0 and z E C.

DEFINITION. For q >0 let q* be the root in 1m z ~ 0 of the equation

that has smallest positive real part. Also let

G*(q) = G(q*, q).

The case when qn = q is fixed for all n is easiest to handle. In fact we shall
prove that in this case

lim Pn(Q)I/n = exp G*(q).

The minimum value of the limit is Vi - 1 and is obtained for q = 11Vi.
For the general situation we have the following result.

THEOREM. (i) limn~co Pn(Q)1In= limn~co exp G*(qn)'

(ii) limn~co Pn(Q)I/n = limn~co exp G*(qn)'

(iii) exp G*(q) ~Vi - 1 for all q> 0 and with equality if and only if
q= l/Vi·

The proof of the theorem will be given first for qn = q E (0, 00),
n = 1,2,... , and then generalized. In this special case we consequently must
prove

lim Pn(Q)I/n = exp G*(q).

3. PRELIMINARY TRANSFORMATIONS

In the definition of Pn(Q) we perform the transformation

t = (nq - x)/(nq +x)

and find that

piQ) = inf{llfn - pill-I,I]: p E IIn },

wherefn(t) = exp[nq(t - 1))/(t + 1)) and II ·11 denotes the sup-norm.

(1)
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For technical reasons we prefer to approximate on the closed complex unit
disc ,1. Andersson and Ganelius [1] discussed a way to reduce problems
concerning rational approximation on more general sets, so-called Faber
sets, to approximation on ,1. In our special case with polynomial approx
imation on [-1, 1] this can be done as follows.

LetJbe continuous on ,1 and analytic in the interior of ,1. Then we define

Now let ",(w) = (w +w- 1)/2, mapping the exterior of ,1 onto the exterior of
[-1, 1]. For a continuous function I on [-1, 1] we define

Jtw) = _1_.f 1 0
",(u) du,

2m c u - w
wEe and [w [ < 1.

Here C is the positively oriented unit circle in C. The crucial properties that
we shall need are the following. The mapping J-tI

(1) is bounded (i.e., there IS a constant K such that
[1/[1[-1.1] ~ K IIJI[I1)'

(2) maps wn
, n ~ 0, on a polynomial of degree n.

For details and further references we refer the reader to [1]. Let us just
mention that property (1) is a consequence of

f Idw arg[",(rw) - 1]1 = 2n
c

for r> 1 and IE [-1, 1).
From these observations it follows that

where In is as in (1). To simplify our notation we denote F n(u) = In 0 ",(u).
Thus we have

and
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Let Pnbe the Taylor polynomial of order n - 1 at the origin for In' Then for
Iwl < 1

and we find that

(2)

The function F,,(u) is analytic in the whole extended plane except for u =-1.
Hence the contour C in (2) can be replaced by other curves y as long as they
behave adequately at u = -1. We want to choose a curve so that
max IF,,(u)u-nl is as small as possible on it.

To simplify our discussion we make a final mapping,

Then

z = (u - I )/(u + I), i.e., U = u(z) = (l +z)/(l - z). (3 )

IF,,(u)u-nl = exp[nG(z, q)]

and for later use we define for each q > 0 a function H by

H(z) = 10g«1 - z)/(1 + z» +qz2.

Consequently G(z, q) = Re H(z).

4. AN EXTREMAL CURVE

DEFINITION. Let.E denote the class of all closed curves a in the extended
right half-plane that are symmetric with respect to the real axis and passes
through the point of infinity.

For a E.E we let g(a) = max{G(z, q): z on a} and

g= inf{ g(a): a E .E}. (4)

Because of the behaviour of G(z, q) as z -+ 00 we may assume that for R
sufficiently large the set an {I z I~ R } consists of the two rays
z = t( I ± iV3), t ~ R/2. Hence we restrict our attention to the set
{z: Izi ~ R, Re z ~ Of. On this set G has only one singular point, namely,
z = 1. Since G(z, q) -+ -00 as z -+ 1, it is possible to find curves a E .E such
that g(a) = g.
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Returning to G(Z, q) = Re H(z) we find

G~ = Re H' = 2 Re((z2 - 1)-1 +qz) (z = x + iy),
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and consequently G~ <0 for x close to O. Therefore we can take our optimal
a so that it never meets the imaginary axis. Hence we can choose our
optimal a so that g is obtained only at points where grad G = O. By the
Cauchy-Riemann equations these points are determined by H' (z) = 0, i.e.,

1 + q(Z3 - z) = O.

Since q >0 this equation has always one negative root which we shall
neglect in the sequel. The other two roots are in Re z >0 and are

----<:omplex conjugated if q < 3 -13/2,
-both equal to z = 1/-13 if q = 3 -13/2,
-real, not equal, between 0 and 1 if q > 3 -13/2.

These points all yield saddle points for G(z, q).
Later we shall use a steepest descent method to get the lower bound.

Therefore we must choose the curves a with some precaution.
In the first case we can take a so that it follows the directions of steepest

descent for G(z, q) at least close to the critical points q* and q*.
In the third case that function G(z, q) has a local minimum along the real

axis at the critical point with smallest real part. At this point q*, the
directions of steepest descent are orthogonal to the real axis. The second
critical point gives a local maximum for G(z, q) along the real axis, and the
directions of steepest descent are along the real axis. Since a is supposed to
be symmetric with respect to the real axis, the optimal curve will never pass
this second critical point.

In the remaining case, q = 3 -13/2 and q* = 1/-13, we see that

G(z, q) = G*(q) + 6- IH(3)(q*) Re(z - q*)3( 1+ 0(1)),

where H(3)(q*) < O. Hence from this point there are three different directions
of steepest descent, namely, along the positively oriented real axis and with
angles ±2rr/3 with respect to this direction. The optimal curve can be taken
to follow the last two directions. Owing to the symmetry, the first direction
will just take us to z = 1 and back.

Hence in all cases we find an optimal curve a such that
g=g(a)=G(q*,q)=G*(q) and close to q* (and q*) (J follows the
directions of steepest descent for G. The regularity of G guarantees that a
can be taken at least piecewise smooth.

Part (iii) of our theorem now follows easily. The optimal curve a must
pass the ray z = t(1 + 0, t> O. On this ray G(z, q) = log I(z - 1)/(z + 1)/.
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FIG. 1. The curve IJ in the cases (a) q < 30/2, (b) q = 30/2 and (c) q> 30/2.
The saddle points and the ray arg z = n/4 are also indicated.

Hence for q > 0,

G*(q) = g(a) ~ min{G(z, q):z = t(1 + i), t ~ O} = logey2 - 1).

The minimum value is obtained for z = (1 + i)/y2. Therefore the only
chance to get G*(q) = logey2 - 1) is that q* = (1 + i)/ y2. This happens if
and only if q = 1/y2 and thus (iii) in the theorem is proved.

5. THE UPPER ESTIMATE WHEN qn = q

We now assume that qn = q >°for all n. The optimal curve a from
Section 4 is mapped back to the u-plane by (3). Thus we get a piecewise
smooth curve yon which

(5)

The behaviour of a as z ---> 00 implies that y approaches -1 along the
circles arg[(u - 1)/(u + 1)] = ±7i/3.

This means that in (2)

u E y, Iwl ~ 1,

for some constant K.
In the construction of a we can avoid the point z = 1. Together with the

regularity properties this means that y has finite length. On y we also have

(K = constant depending on q).

We now observe that the function X-I exp[-Knx- 2] is increasing for
0<x~(2Kn)I/2. For n~-[2G*(q)]-' and lu+ll~(-K/G*(q»'/2 we
consequently get

IFn(u)I.!u + 11-1 ~ (-G*(q)/K)l/2 exp[nG*(q)].
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On the other hand, using (5) for Iu + 11 ~ (-K/G*(q))112 we obtain

IFn(u) u-nl·lu + 11- 1 ~ (_G*(q)/K)1/2 exp[nG*(q)].

In (2) this implies that

En(Jn) ~ Kq exp[nG*(q)].

Since Pn(Q) ~ KEn(Jn) we consequently get

limPn(Q)lln ~ exp G*(q).

6. THE LOWER ESTIMATE WHEN qn = q

Returning to (1) in Section 3, by the Hahn-Banach theorem we obtain

Pn(Q) = sup IJjn{t) dp(t) I,
where the sup is taken over all measures dp on [-1, 1] such that

(i) J (k dp = 0, k = 0,... , n,

(ii) Ildpll~1.

For m = 2, 3 we let dPm be given by
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2nif h dPm = Ie h a fII(U) . u-n-mdu,

for all functions h continuous on [-1, 1]. As before fII(u) = (u +u - 1)/2 and
c: the complex unit circle. Conditions (i) and (ii) are satisfied for dPm'
Hence for m = 2, 3

where y is the optimal curve from Section 5, oriented to match the orien
tation of C.

With the same transformations as those in the previous sections we have

Fn(u)· u- n= exp[nH(z)].

In the z-plane we have chosen the optimal curve a so that close to a critical
point a is an orthogonal trajectory of the level curves of Re H(z). This
means that 1m H(z) is constant on a close to a critical point. Let a be this
constant at the critical point q* in the upper half-plane.
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Pick e > 0 small. Divide Y into the three parts

YI = {u E y: G(z, q):(, G*(q) - e},

Y2 = the part of Y\YI' in 1m u ~ 0,

Y3 = the part of Y\YI' in 1m u :(, O.

Let

II = f Fn(u) u- n- mdu;
y,

then it holds that

1111:(, K exp n[G*(q) - e].

Furthermore we notice that because of the symmetry

f Fn(u) u-n-mdu = f Fn(ii)(ii)-n-m dii= -f Fn(u) u- n- mduo
n n n

Consequently with

12 =f +f Fn(u) u-n- mdu
1'2 Y3

we have

12 = 2i 1mf Fn(u) u- n- mduo
Y2

For e sufficiently small we know that

Let /3(u) = arg u and du = Idul . exp(i£5(u)) on y. Then

1m f F(u) u- n- mdu = f sin[na - m/3(u) + £5(u)) . IFn(u)u- n- mlldul·
Y2 12

(7)

There exists a constant k >0 such that at least for one of the two possible
values of m it holds that

Isin [na - m/3(u) + £5(u))1 ~ k >0

for u close to u(q*). This follows since /3(u) -=1= 0 (mod n) if u is not real.
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which we can assume if u(q*) is not real. On the other hand, if u(q*) is real
then a = 0 (mod n), ,B(u) ~ 0 (mod n) and b(u) ~ n/2 (if q > 3 /3/2) or 2n/3
(if q = 3 /3/2) as u~ u(q*) on Y2'

Since log IFn(u)u- n
l is differentiable at u(q*), by standard saddle point

methods (see e.g., de Bruijn [2]) we get

max 1121I/n~expG*(q),
m=2,3

Returning to (6) we have

n~ 00. (8)

But (7) and (8) yield I:; 1 • I 1~ 0 and consequently

lim Pn(Q)l/n ~ lim I1211/ n= exp G*(q).

This concludes the proof of the theorem in case qn = q for all n.

7. THE GENERAL CASE

The simplest generalization of the proof in the previous sections is to the
case when qn ~ q E (0, 00). Continuity arguments in the previous proof
immediately gives

limpn(Q)I/n = exp G*(q),

at least for q 1= 3 /3/2. In case q = 3 /3/2 the lower estimate is not as
obvious.

The case qn ~ 00 can be handled in the same manner. Since then
q~ ~ 1/qn -> 0 and G*(qn) -> 0 the upper estimate is trivial. The lower
estimate follows as in Section 6, since the optimal curves an will approach
the imaginary axis as n ~ 00.

The cases qn -> 0 and qn ~ 3/3/2 can be handled by a different method.
The approach is the same for the two cases so we just concentrate on qn -> O.
We observe that q~ ~ q;; 1/3 • (1 +i /3)/2. This gives G*(qn) -> 0 so the
upper estimate is trivial. It remains to prove that

To get a contradiction we assume that

limpn(Q)I/n ~ exp(-2a), for some a > O.
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Then for a subsequence N' of the natural numbers we can find r E Rn(Q)
such that

for all X? o.

For every 0 <e <a we get

X?o.

Substituting t = x - en we find

t? -en,

where r*(t) = r(t +ne) exp ne. Letting Q£ = (e + qn)'(" we therefore get

lim Pn(Q.) lin ~ exp (e - a).

But since e + qn -4 e we already know that

Hence for all e: 0 <e <a

G*(e) ~ e - a,

which is impossible since G*(e) -4 0 as e -4 O. Thus

The general situation when qn does not tend to a limit now obviously follows
by looking at suitable subsequences. So the theorem is proved.

8. A GOOD ApPROXIMANT

Finally we further study the optimal situation q = 1/y'2. In the approx
imation of In in Section 5 we used the Taylor polynomial I:~ a k wk of order
n. Since we then used the mapping 1-4f to get an approximation of fn it is
natural to analyze this mapping somewhat further. For Iwi < I we have

J1:w) = -2
1

.f fo If/(u) du = f 2w
k

. f fo If/(u) U- k -
l duo

m c u-w 0 m c
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By definition 'II(u) = (u + U -I )/2 so we substitute u = exp(iv) and find

r fo 'II(u) U- k- I du = 2ij'''f(cos v) cos kv
'c 0

,I

= 2i J f(x) Tk(x)( 1 - x 2
) -1/2 dx,

-I

where Tk(x) = cos(n arccos x), i.e., the kth Chebyshev polynomial. Hence

00

](w)=bo +2- 1 Ibkw\
I
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where bk is the kth Fourier-Chebyshev coefficient off From this fact we can
deduce that 2Tk (w) = w\ k> 0, and To = 1. Thus the Taylor series of 1
corresponds to the Fourier-Chebyshev series off

The function rn(x) that we can use to approximate e- x is then

rn(X)=I.bkTk (n-x~),
o n +x 2

where bk is the kth Fourier-Chebyshev coefficient of

net - 1)
fn(t) = exp . ;;"

(t+ l)y2

From Section 5 we can also get a better estimate than that in our theorem,
namely,

x~o,

for some constant K.
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