Approximation of e^{-x} by Rational Functions with Concentrated Negative Poles

JAN-ERIK ANDERSSON

Department of Mathematics, University of Göteborg, Göteborg, Sweden Communicated by Richard S. Varga Received April 30, 1979

1. INTRODUCTION

In a number of papers uniform approximation of e^{-x} on $[0, \infty)$ by rational functions has been investigated. Because of its importance in certain numerical methods, Saff et al. [4] studied the degree of approximation by functions of the form $p(x)(x + nq)^{-n}$, q > 0, p polynomial of degree at most n. The method used in [4] gave the best order of approximation for q = 1. In this case it was shown that the order is at most $O(2^{-n})$.

Recently, Kaufman and Taylor [3] commented on this result. Among other things they asked if the choice q = 1 is optimal. In this paper we shall prove a theorem that shows that it is not. The best choice is $q = 1/\sqrt{2}$ and then the degree of approximation is essentially of the order $(\sqrt{2}+1)^{-n}$.

2. FOMULATION OF THE RESULT

We give a result that determines the asymptotic behaviour of the degree of approximation of e^{-x} on $[0, \infty)$ by functions of the form $p(x)(x + a_n)^{-n}$, for any sequence of $a_n > 0$. For reasons that will be clear later we prefer to rewrite a_n as nq_n .

For a sequence $Q = (q_n)_1^\infty$ of positive real numbers let

$$R_n(Q) = \{ \text{functions of type } p(x)(x + nq_n)^{-n}, p \in \Pi_n \}.$$

Here and in the sequal Π_n denotes the class of polynomials of degree at most n. Furthermore, let

$$\rho_n(Q) = \inf\{\sup_{x>0} |e^{-x} - r(x)|: r \in R_n(Q)\}.$$

The following function G will be central:

$$G(z,q) = \log \left| \frac{z-1}{z+1} \right| + q \operatorname{Re} z^2, \quad q > 0 \text{ and } z \in \mathbb{C}.$$

In stating our theorem we need another

DEFINITION. For q > 0 let q^* be the root in Im $z \ge 0$ of the equation

$$q(z^3-z)+1=0,$$

that has smallest positive real part. Also let

$$G^*(q) = G(q^*, q).$$

The case when $q_n = q$ is fixed for all *n* is easiest to handle. In fact we shall prove that in this case

$$\lim \rho_n(Q)^{1/n} = \exp G^*(q).$$

The minimum value of the limit is $\sqrt{2} - 1$ and is obtained for $q = 1/\sqrt{2}$. For the general situation we have the following result.

THEOREM. (i) $\overline{\lim}_{n\to\infty} \rho_n(Q)^{1/n} = \overline{\lim}_{n\to\infty} \exp G^*(q_n)$, (ii) $\underline{\lim}_{n\to\infty} \rho_n(Q)^{1/n} = \underline{\lim}_{n\to\infty} \exp G^*(q_n)$, (iii) $\exp G^*(q) \ge \sqrt{2} - 1$ for all q > 0 and with equality if and only if $q = 1/\sqrt{2}$.

The proof of the theorem will be given first for $q_n = q \in (0, \infty)$, n = 1, 2,..., and then generalized. In this special case we consequently must prove

$$\lim \rho_n(Q)^{1/n} = \exp G^*(q).$$

3. PRELIMINARY TRANSFORMATIONS

In the definition of $\rho_n(Q)$ we perform the transformation

$$t = (nq - x)/(nq + x)$$

and find that

$$\rho_n(Q) = \inf\{\|f_n - p\|_{[-1,1]} \colon p \in \Pi_n\},\tag{1}$$

where $f_n(t) = \exp[nq(t-1))/(t+1)]$ and $\|\cdot\|$ denotes the sup-norm.

For technical reasons we prefer to approximate on the closed complex unit disc Δ . Andersson and Ganelius [1] discussed a way to reduce problems concerning rational approximation on more general sets, so-called Faber sets, to approximation on Δ . In our special case with polynomial approximation on [-1, 1] this can be done as follows.

Let \tilde{f} be continuous on Δ and analytic in the interior of Δ . Then we define

$$E_n(\tilde{f}) = \inf\{\|\tilde{f} - p\|_{\Delta} \colon p \in \Pi_n\}.$$

Now let $\psi(w) = (w + w^{-1})/2$, mapping the exterior of Δ onto the exterior of [-1, 1]. For a continuous function f on [-1, 1] we define

$$\tilde{f}(w) = \frac{1}{2\pi i} \int_C \frac{f \circ \psi(u)}{u - w} du, \qquad w \in \mathbb{C} \text{ and } |w| < 1.$$

Here C is the positively oriented unit circle in \mathbb{C} . The crucial properties that we shall need are the following. The mapping $\tilde{f} \rightarrow f$

(1) is bounded (i.e., there is a constant K such that $||f||_{I-1,1} \leq K ||\tilde{f}||_{\Delta}$),

(2) maps w^n , $n \ge 0$, on a polynomial of degree n.

For details and further references we refer the reader to [1]. Let us just mention that property (1) is a consequence of

$$\int_C |d_w \arg[\psi(rw) - t]| = 2\pi$$

for r > 1 and $t \in [-1, 1]$.

From these observations it follows that

$$\rho_n(Q) \leqslant KE_n(\tilde{f}_n),$$

where f_n is as in (1). To simplify our notation we denote $F_n(u) = f_n \circ \psi(u)$. Thus we have

$$F_n(u) = \exp\left[nq\left(\frac{u-1}{u+1}\right)^2\right]$$

and

$$2\pi i \tilde{f}_n(w) = \int_C F_n(u)(u-w)^{-1} du$$

Let P_n be the Taylor polynomial of order n-1 at the origin for \tilde{f}_n . Then for |w| < 1

$$2\pi i(f(w) - P_n(w)) = w^n \int_C F_n(u) \, u^{-n} (u - w)^{-1} \, du$$

and we find that

$$E_n(\tilde{f}_n) \leqslant \sup_{\|w\| \leqslant 1} \left| \int_C F_n(u) u^{-n} (u-w)^{-1} du \right|.$$
 (2)

The function $F_n(u)$ is analytic in the whole extended plane except for u = -1. Hence the contour C in (2) can be replaced by other curves γ as long as they behave adequately at u = -1. We want to choose a curve so that $\max |F_n(u)u^{-n}|$ is as small as possible on it.

To simplify our discussion we make a final mapping,

$$z = (u-1)/(u+1),$$
 i.e., $u = u(z) = (1+z)/(1-z).$ (3)

Then

$$|F_n(u)u^{-n}| = \exp[nG(z,q)]$$

and for later use we define for each q > 0 a function H by

$$H(z) = \log((1-z)/(1+z)) + qz^2.$$

Consequently $G(z, q) = \operatorname{Re} H(z)$.

4. AN EXTREMAL CURVE

DEFINITION. Let Σ denote the class of all closed curves σ in the extended right half-plane that are symmetric with respect to the real axis and passes through the point of infinity.

For $\sigma \in \Sigma$ we let $g(\sigma) = \max\{G(z, q) : z \text{ on } \sigma\}$ and

$$\hat{g} = \inf\{g(\sigma) \colon \sigma \in \Sigma\}.$$
(4)

Because of the behaviour of G(z, q) as $z \to \infty$ we may assume that for R sufficiently large the set $\sigma \cap \{|z| \ge R\}$ consists of the two rays $z = t(1 \pm i\sqrt{3}), t \ge R/2$. Hence we restrict our attention to the set $\{z: |z| \le R, \text{Re } z \ge 0\}$. On this set G has only one singular point, namely, z = 1. Since $G(z, q) \to -\infty$ as $z \to 1$, it is possible to find curves $\sigma \in \Sigma$ such that $g(\sigma) = \hat{g}$.

Returning to $G(z, q) = \operatorname{Re} H(z)$ we find

$$G'_x = \operatorname{Re} H' = 2 \operatorname{Re}((z^2 - 1)^{-1} + qz) \qquad (z = x + iy),$$

and consequently $G'_x < 0$ for x close to 0. Therefore we can take our optimal σ so that it never meets the imaginary axis. Hence we can choose our optimal σ so that \hat{g} is obtained only at points where grad G = 0. By the Cauchy-Riemann equations these points are determined by H'(z) = 0, i.e.,

$$1 + q(z^3 - z) = 0.$$

Since q > 0 this equation has always one negative root which we shall neglect in the sequel. The other two roots are in Re $z \ge 0$ and are

—complex conjugated if $q < 3\sqrt{3}/2$,

—both equal to
$$z = 1/\sqrt{3}$$
 if $q = 3\sqrt{3}/2$,

—real, not equal, between 0 and 1 if $q > 3\sqrt{3}/2$.

These points all yield saddle points for G(z, q).

Later we shall use a steepest descent method to get the lower bound. Therefore we must choose the curves σ with some precaution.

In the first case we can take σ so that it follows the directions of steepest descent for G(z, q) at least close to the critical points q^* and $\overline{q^*}$.

In the third case that function G(z, q) has a local minimum along the real axis at the critical point with smallest real part. At this point q^* , the directions of steepest descent are orthogonal to the real axis. The second critical point gives a local maximum for G(z, q) along the real axis, and the directions of steepest descent are along the real axis. Since σ is supposed to be symmetric with respect to the real axis, the optimal curve will never pass this second critical point.

In the remaining case, $q = 3\sqrt{3}/2$ and $q^* = 1/\sqrt{3}$, we see that

$$G(z,q) = G^*(q) + 6^{-1}H^{(3)}(q^*)\operatorname{Re}(z-q^*)^3(1+o(1)),$$

where $H^{(3)}(q^*) < 0$. Hence from this point there are three different directions of steepest descent, namely, along the positively oriented real axis and with angles $\pm 2\pi/3$ with respect to this direction. The optimal curve can be taken to follow the last two directions. Owing to the symmetry, the first direction will just take us to z = 1 and back.

Hence in all cases we find an optimal curve σ such that $\hat{g} = g(\sigma) = G(q^*, q) = G^*(q)$ and close to q^* (and $\overline{q^*}$) σ follows the directions of steepest descent for G. The regularity of G guarantees that σ can be taken at least piecewise smooth.

Part (iii) of our theorem now follows easily. The optimal curve σ must pass the ray z = t(1 + i), $t \ge 0$. On this ray $G(z, q) = \log |(z - 1)/(z + 1)|$.

FIG. 1. The curve σ in the cases (a) $q < 3\sqrt{3}/2$, (b) $q = 3\sqrt{3}/2$ and (c) $q > 3\sqrt{3}/2$. The saddle points and the ray arg $z = \pi/4$ are also indicated.

Hence for q > 0,

$$G^*(q) = g(\sigma) \ge \min\{G(z, q) : z = t(1+i), t \ge 0\} = \log(\sqrt{2}-1)$$

The minimum value is obtained for $z = (1 + i)/\sqrt{2}$. Therefore the only chance to get $G^*(q) = \log(\sqrt{2} - 1)$ is that $q^* = (1 + i)/\sqrt{2}$. This happens if and only if $q = 1/\sqrt{2}$ and thus (iii) in the theorem is proved.

5. The Upper Estimate when $q_n = q$

We now assume that $q_n = q > 0$ for all *n*. The optimal curve σ from Section 4 is mapped back to the *u*-plane by (3). Thus we get a piecewise smooth curve γ on which

$$|F_n(u) u^{-n}| \leq \exp[nG^*(q)].$$
⁽⁵⁾

The behaviour of σ as $z \to \infty$ implies that γ approaches -1 along the circles $\arg[(u-1)/(u+1)] = \pm \pi/3$.

This means that in (2)

$$|u-w|^{-1} \leq K |u+1|^{-1}, \quad u \in \gamma, |w| \leq 1,$$

for some constant K.

In the construction of σ we can avoid the point z = 1. Together with the regularity properties this means that γ has finite length. On γ we also have

$$|F_n(u)| \leq \exp[-Kn |u+1|^{-2}]$$
 (K = constant depending on q).

We now observe that the function $x^{-1} \exp[-Knx^{-2}]$ is increasing for $0 < x \le (2Kn)^{1/2}$. For $n \ge -[2G^*(q)]^{-1}$ and $|u+1| \le (-K/G^*(q))^{1/2}$ we consequently get

$$|F_n(u)| \cdot |u+1|^{-1} \leq (-G^*(q)/K)^{1/2} \exp[nG^*(q)].$$

On the other hand, using (5) for $|u + 1| \ge (-K/G^*(q))^{1/2}$ we obtain

$$|F_n(u) u^{-n}| \cdot |u+1|^{-1} \leq (-G^*(q)/K)^{1/2} \exp[nG^*(q)].$$

In (2) this implies that

$$E_n(\tilde{f}_n) \leqslant K_q \exp[nG^*(q)]$$

Since $\rho_n(Q) \leq KE_n(\tilde{f}_n)$ we consequently get

$$\overline{\lim} \rho_n(Q)^{1/n} \leqslant \exp G^*(q).$$

6. The Lower Estimate when $q_n = q$

Returning to (1) in Section 3, by the Hahn–Banach theorem we obtain

$$\rho_n(Q) = \sup \left| \int f_n(t) \, d\mu(t) \right|,$$

where the sup is taken over all measures $d\mu$ on [-1, 1] such that

(i) $\int t^k d\mu = 0, \ k = 0, ..., n,$

(ii)
$$||d\mu|| \leq 1$$
.

For m = 2, 3 we let $d\mu_m$ be given by

$$2\pi i \int h \, d\mu_m = \int_C h \circ \psi(u) \cdot u^{-n-m} \, du,$$

for all functions h continuous on [-1, 1]. As before $\psi(u) = (u + u^{-1})/2$ and C: the complex unit circle. Conditions (i) and (ii) are satisfied for $d\mu_m$. Hence for m = 2, 3

$$2\pi\rho_n(Q) \ge \left| \int_C F_n(u) \cdot u^{-n-m} \, du \right| = \left| \int_{\gamma} F_n(u) \, u^{-n-m} \, du \right|, \qquad (6)$$

where γ is the optimal curve from Section 5, oriented to match the orientation of C.

With the same transformations as those in the previous sections we have

$$F_n(u) \cdot u^{-n} = \exp[nH(z)].$$

In the z-plane we have chosen the optimal curve σ so that close to a critical point σ is an orthogonal trajectory of the level curves of Re H(z). This means that Im H(z) is constant on σ close to a critical point. Let α be this constant at the critical point q^* in the upper half-plane.

Pick $\varepsilon > 0$ small. Divide γ into the three parts

$$y_1 = \{ u \in \gamma : G(z, q) \leq G^*(q) - \varepsilon \},\$$

$$y_2 = \text{the part of } \gamma \setminus \gamma_1, \text{ in Im } u \ge 0,\$$

$$\gamma_3 = \text{the part of } \gamma \setminus \gamma_1, \text{ in Im } u \le 0.$$

Let

$$I_1 = \int_{\gamma_1} F_n(u) \, u^{-n-m} \, du;$$

then it holds that

$$|I_1| \leq K \exp n[G^*(q) - \varepsilon].$$
(7)

Furthermore we notice that because of the symmetry

$$\int_{y_2} F_n(u) \, u^{-n-m} \, du = \int_{y_2} F_n(\bar{u}) (\bar{u})^{-n-m} \, d\bar{u} = -\int_{y_3} F_n(u) \, u^{-n-m} \, du.$$

Consequently with

$$I_2 = \int_{\gamma_2} + \int_{\gamma_3} F_n(u) u^{-n-m} du$$

we have

$$I_2 = 2i \operatorname{Im} \int_{\gamma_2} F_n(u) \, u^{-n-m} \, du$$

For ε sufficiently small we know that

$$F_n(u)u^{-n} = |F_n(u)u^{-n}| \exp(in\alpha).$$

Let $\beta(u) = \arg u$ and $du = |du| \cdot \exp(i\delta(u))$ on γ . Then

$$\operatorname{Im} \int_{\gamma_2} F(u) \, u^{-n-m} \, du = \int_{\gamma_2} \sin[n\alpha - m\beta(u) + \delta(u)] \cdot |F_n(u)u^{-n-m}| \, |du|.$$

There exists a constant k > 0 such that at least for one of the two possible values of m it holds that

$$|\sin[n\alpha - m\beta(u) + \delta(u)]| \ge k > 0$$

for u close to $u(q^*)$. This follows since $\beta(u) \neq 0 \pmod{\pi}$ if u is not real,

which we can assume if $u(q^*)$ is not real. On the other hand, if $u(q^*)$ is real then $\alpha = 0 \pmod{\pi}$, $\beta(u) \to 0 \pmod{\pi}$ and $\delta(u) \to \pi/2$ (if $q > 3 \sqrt{3}/2$) or $2\pi/3$ (if $q = 3 \sqrt{3}/2$) as $u \to u(q^*)$ on γ_2 .

Since $\log |F_n(u)u^{-n}|$ is differentiable at $u(q^*)$, by standard saddle point methods (see e.g., de Bruijn [2]) we get

$$\max_{m=2,3} |I_2|^{1/n} \to \exp G^*(q), \qquad n \to \infty.$$
(8)

Returning to (6) we have

$$(2\pi\rho_n(Q))^{1/n} \ge |I_1 + I_2|^{1/n} = |I_2|^{1/n} |1 + I_2^{-1} \cdot I_1|^{1/n}.$$

But (7) and (8) yield $I_2^{-1} \cdot I_1 \rightarrow 0$ and consequently

$$\underline{\lim} \rho_n(Q)^{1/n} \ge \underline{\lim} |I_2|^{1/n} = \exp G^*(q).$$

This concludes the proof of the theorem in case $q_n = q$ for all n.

7. THE GENERAL CASE

The simplest generalization of the proof in the previous sections is to the case when $q_n \rightarrow q \in (0, \infty)$. Continuity arguments in the previous proof immediately gives

$$\lim \rho_n(Q)^{1/n} = \exp G^*(q),$$

at least for $q \neq 3\sqrt{3}/2$. In case $q = 3\sqrt{3}/2$ the lower estimate is not as obvious.

The case $q_n \to \infty$ can be handled in the same manner. Since then $q_n^* \sim 1/q_n \to 0$ and $G^*(q_n) \to 0$ the upper estimate is trivial. The lower estimate follows as in Section 6, since the optimal curves σ_n will approach the imaginary axis as $n \to \infty$.

The cases $q_n \to 0$ and $q_n \to 3\sqrt{3}/2$ can be handled by a different method. The approach is the same for the two cases so we just concentrate on $q_n \to 0$. We observe that $q_n^* \sim q_n^{-1/3} \cdot (1 + i\sqrt{3})/2$. This gives $G^*(q_n) \to 0$ so the upper estimate is trivial. It remains to prove that

$$\underline{\lim} \rho_n(Q)^{1/n} = 1.$$

To get a contradiction we assume that

$$\underline{\lim} \rho_n(Q)^{1/n} \leq \exp(-2a), \quad \text{for some } a > 0.$$

Then for a subsequence N' of the natural numbers we can find $r \in R_n(Q)$ such that

$$|e^{-x}-r(x)| \leq e^{-an}$$
, for all $x \ge 0$.

For every $0 < \varepsilon < a$ we get

$$|e^{-(x-\epsilon n)}-r(x)e^{\epsilon n}| \leq e^{-(a-\epsilon)n}, \quad x \geq 0.$$

Substituting $t = x - \varepsilon n$ we find

$$|e^{-t}-r^*(t)| \leq e^{-(a-\epsilon)n}, \quad t \geq -\varepsilon n$$

where $r^*(t) = r(t + n\varepsilon) \exp n\varepsilon$. Letting $Q_{\epsilon} = (\varepsilon + q_n)_1^{\infty}$, we therefore get

$$\underline{\lim} \rho_n(Q_{\epsilon})^{1/n} \leq \exp(\varepsilon - a).$$

But since $\varepsilon + q_n \rightarrow \varepsilon$ we already know that

$$\underline{\lim} \rho_n(Q_{\epsilon})^{1/n} = \exp G^*(\epsilon).$$

Hence for all ε : $0 < \varepsilon < a$

$$G^*(\varepsilon) \leq \varepsilon - a$$

which is impossible since $G^*(\varepsilon) \to 0$ as $\varepsilon \to 0$. Thus

$$\underline{\lim} \rho_n(Q)^{1/n} = 1.$$

The general situation when q_n does not tend to a limit now obviously follows by looking at suitable subsequences. So the theorem is proved.

8. A GOOD APPROXIMANT

Finally we further study the optimal situation $q = 1/\sqrt{2}$. In the approximation of \tilde{f}_n in Section 5 we used the Taylor polynomial $\sum_{0}^{n} a_k w^k$ of order *n*. Since we then used the mapping $\tilde{f} \rightarrow f$ to get an approximation of f_n it is natural to analyze this mapping somewhat further. For |w| < 1 we have

$$\tilde{f}(w) = \frac{1}{2\pi i} \int_C \frac{f \circ \psi(u)}{u - w} \, du = \sum_0^\infty \frac{w^k}{2\pi i} \int_C f \circ \psi(u) \, u^{-k-1} \, du.$$

By definition $\psi(u) = (u + u^{-1})/2$ so we substitute $u = \exp(iv)$ and find

$$\int_{C} f \circ \psi(u) \, u^{-k-1} \, du = 2i \int_{0}^{\pi} f(\cos v) \cos kv$$
$$= 2i \int_{-1}^{1} f(x) \, T_{k}(x) (1-x^{2})^{-1/2} \, dx,$$

where $T_k(x) = \cos(n \arccos x)$, i.e., the kth Chebyshev polynomial. Hence

$$\tilde{f}(w) = b_0 + 2^{-1} \sum_{k=1}^{\infty} b_k w^k,$$

where b_k is the kth Fourier-Chebyshev coefficient of f. From this fact we can deduce that $2\tilde{T}_k(w) = w^k$, k > 0, and $\tilde{T}_0 = 1$. Thus the Taylor series of \tilde{f} corresponds to the Fourier-Chebyshev series of f.

The function $r_n(x)$ that we can use to approximate e^{-x} is then

$$r_n(x) = \sum_{0}^{n} b_k T_k \left(\frac{n - x \sqrt{2}}{n + x \sqrt{2}} \right),$$

where b_k is the kth Fourier-Chebyshev coefficient of

$$f_n(t) = \exp \frac{n(t-1)}{(t+1)\sqrt{2}}.$$

From Section 5 we can also get a better estimate than that in our theorem, namely,

$$|e^{-x}-r_n(x)| \leq K(\sqrt{2}-1)^n, \qquad x \geq 0,$$

for some constant K.

References

- 1. J.-E. ANDERSSON AND T. H. GANELIUS, The degree of approximation by rational functions with fixed poles, *Math. Z.* 153 (1977), 161–166.
- 2. N. G. DE BRUIJN, "Asymptotic Methods in Analysis," North-Holland, Amsterdam, 1958.
- 3. E. H. KAUFMAN, JR., AND G. D. TAYLOR, Uniform approximation with rational functions having negative poles, J. Approx. Theory 23 (1978), 364-378.
- 4. E. B. SAFF, A. SCHÖNHAGE, AND R. S. VARGA, Geometric convergence to e^{-z} by rational functions with real poles, *Numer. Math.* 25 (1976), 307-322.