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1. INTRODUCTION

In a number of papers uniform approximation of e™* on [0, o) by
rational functions has been investigated. Because of its importance in certain
numerical methods, Saff et al. [4] studied the degree of approximation by
functions of the form p(x)(x + ng)™", g > 0, p polynomial of degree at most
n. The method used in [4] gave the best order of approximation for ¢ = 1. In
this case it was shown that the order is at most O(27").

Recently, Kaufman and Taylor [3] commented on this result. Among
other things they asked if the choice ¢ = 1 is optimal. In this paper we shall
prove a theorem that shows that it is not. The best cheice is ¢ = 1//2 and
then the degree of approximation is essentially of the order (\/f + 1"

2. FOMULATION OF THE RESULT

We give a result that determines the asymptotic behaviour of the degree of
approximation of e ™" on [0, c0) by functions of the form p(x)(x + a,)~", for
any sequence of a, > 0. For reasons that will be clear later we prefer to
rewrite a, as ng,,.

For a sequence Q = (g,)° of positive real numbers let

R, (Q) = {functions of type p(x)(x + ng,)”" ", p € I1,}.

Here and in the sequal /7, denotes the class of polynomials of degree at most
n. Furthermore, let

pu(Q) = inf{sup [~ — r(x)|: r € R,(Q)}.
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The following function G will be central:

—1
z——!+qRezz, g>0and zeC.

G(z,q)=log o

In stating our theorem we need another

DEFINITION. For g > 0 let g* be the root in Im z > 0 of the equation
qZ—z)+1=0,
that has smallest positive real part. Also let

G*(q) = G(g*, 9)-

The case when g, = g is fixed for all n is easiest to handle. In fact we shall
prove that in this case

lim p,(Q)"" = exp G*(g).

The minimum value of the limit is /2 — 1 and is obtained for g = 1/1/2.
For the general situation we have the following result.

THEOREM‘ (l) li—m—n—»oo pn(Q)l/n = mn—»oo exp G*(qn)’

(i) lim, ,p,(Q)""=lim, , exp G*(g,).
(iii) exp G*(q) > /2 — 1 for all ¢ > 0 and with equality if and only if
q=1/\/2.
The proof of the theorem will be given first for ¢g,=g€ (0, o),

n=1,2,.., and then generalized. In this special case we consequently must
prove

lim p,(Q)"" = exp G*(g).

3. PRELIMINARY TRANSFORMATIONS

In the definition of p,(Q) we perform the transformation
t=(ng — x)/(nq + x)
and find that

pn(Q)zinf{”fn_pH[—l,llszHn}’ (1)

where f,(t) = exp{ng(t — 1))/(t + 1)] and || - || denotes the sup-norm.
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For technical reasons we prefer to approximate on the closed complex unit
disc 4. Andersson and Ganelius [1] discussed a way to reduce problems
concerning rational approximation on more general sets, so-called Faber
sets, to approximation on A. In our special case with polynomial approx-
imation on |[—1, 1] this can be done as follows.

Let f'be continuous on 4 and analytic in the interior of 4. Then we define

E,(f)=inf{|f— pl: p € 11,}.

Now let yw(w) = (w + w™~')/2, mapping the exterior of 4 onto the exterior of
[—1, 1]. For a continuous function fon [—1, 1] we define

ftw)=5:z—iJ’C£:—i/%)—du, w€ C and [w| < 1.

Here C is the positively oriented unit circle in C. The crucial properties that
we shall need are the following. The mapping f— f

(1) is bounded (i.e, there is a constant K such that
1A= <K FN8)s

(2) maps w", n >0, on a polynomial of degree n.

For details and further references we refer the reader to [1]. Let us just
mention that property (1) is a consequence of

[ 1d, arg[w(rw) —t]) =27

forr>1andt€[-1,1]
From these observations it follows that

pu(Q) < KE,(f,):

where f,, is as in (1). To simplify our notation we denote F,(u) = f, o w(u).
Thus we have

F (u)=exp [nq (%—3—;)2]

and

27if(w) = J F(u)(u—w)~' du.
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Let P, be the Taylor polynomial of order n — 1 at the origin for f,. Then for
Iw| < 1

2ni( f(w) — P (w)) = w"J F(uyu "(u—w)™! du‘
and we find that

E (/)< sup
w1

j F)u™"(u—w) 'du|. ()

The function F,(u) is analytic in the whole extended plane except for u = —1.
Hence the contour C in (2) can be replaced by other curves y as long as they
behave adequately at u=—1. We want to choose a curve so that
max |F (u)u~"| is as small as possible on it.

To simplify our discussion we make a final mapping,

z=wm—1)/(u+1), ie, u=ulz)=(01+2z)/(1 —2). 3)
Then
|Fy(u)u™"| = exp[nG(z, q)]
and for later use we define for each g > 0 a function H by
H(z) =log((1 — z)/(1 + 2)) + qz*.

Consequently G(z, g) = Re H(z).

4, AN EXTREMAL CURVE

DEeFINITION. Let X denote the class of all closed curves o in the extended
right half-plane that are symmetric with respect to the real axis and passes
through the point of infinity.

For ¢ € X we let g(o) = max{G(z, g): z on ¢} and

g=inf{g(o):0 € Z}. 4)

Because of the behaviour of G(z, g) as z —» o0 we may assume that for R
sufficiently large the set oM {|z| >R} consists of the two rays
z=#(1+4/3), t>R/2. Hence we restrict our attention to the set
{z:|z] < R,Rez >0}. On this set G has only one singular point, namely,
z=1. Since G(z,9) > —o0 as z— 1, it is possible to find curves ¢ € X' such
that g(o) = 4.
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Returning to G(z, g) = Re H(z) we find
G.=ReH =2Re((z*—1)"' +qz) (z=x+1iy),

and consequently G, < 0 for x close to 0. Therefore we can take our optimal
o so that it never meets the imaginary axis. Hence we can choose our
optimal ¢ so that ¢ is obtained only at points where grad G=0. By the
Cauchy-Riemann equations these points are determined by H'(z) =0, i.e.,

1+g(z* —z)=0.

Since g > 0 this equation has always one negative root which we shall
neglect in the sequel. The other two roots are in Rez > 0 and are

—complex conjugated if g < 3 1/3/2,
—both equal to z = 1/\/3 if g = 3 1/3/2,
—real, not equal, between 0 and 1 if g > 3 1/3/2.

These points all yield saddle points for G(z, q).

Later we shall use a steepest descent method to get the lower bound.
Therefore we must choose the curves o with some precaution.

In the first case we can take ¢ so that it follows the directions of steepest
descent for G(z, g) at least close to the critical points ¢g* and g*.

In the third case that function G(z, g) has a local minimum along the real
axis at the critical point with smallest real part. At this point g¢*, the
directions of steepest descent are orthogonal to the real axis. The second
critical point gives a local maximum for G(z, g) along the real axis, and the
directions of steepest descent are along the real axis. Since ¢ is supposed to
be symmetric with respect to the real axis, the optimal curve will never pass
this second critical point.

In the remaining case, ¢ = 3 /3/2 and ¢* = 1/,/3, we see that

G(z,q) = G*(q) + 6~ 'H(¢*) Re(z — g%)*(1 + o(1)),

where H®(g*) < 0. Hence from this point there are three different directions
of steepest descent, namely, along the positively oriented real axis and with
angles +27/3 with respect to this direction. The optimal curve can be taken
to follow the last two directions. Owing to the symmetry, the first direction
will just take us to z = 1 and back.

Hence in all cases we find an optimal curve ¢ such that
§=g(0)=G(g*, q)= G*(g) and close to ¢* (and g*) o follows the
directions of steepest descent for G. The regularity of G guarantees that ¢
can be taken at least piecewise smooth.

Part (iii) of our theorem now follows easily. The optimal curve ¢ must
pass the ray z=1#(1 +1), 1> 0. On this ray G(z,q)=log|(z — 1)/(z + 1)
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FiG. 1. The curve ¢ in the cases (a) ¢ <3 \/3/2, (by g=13 \/5/2 and (c) ¢ >3 \ﬁ/Z.
The saddle points and the ray arg z = n/4 are also indicated.

Hence for ¢ > 0,
G*(q) = g(o) > min{G(z, q):z = t(1 + i), 1 > 0} = log(y/2 — 1).

The minimum value is obtained for z= (1 +i)/\/2. Therefore the only
chance to get G*(q) = log(y/2 — 1) is that g* = (1 + i)/\/2. This happens if
and only if ¢ = 1/,/2 and thus (iii) in the theorem is proved.

5. THE UPPER ESTIMATE WHEN g, = ¢

We now assume that g, =g >0 for all n. The optimal curve ¢ from
Section 4 is mapped back to the u-plane by (3). Thus we get a piecewise
smooth curve y on which

|Fy(u) u™"| < exp[nG*(g)]. (5)

The behaviour of ¢ as z— oo implies that y approaches —1 along the
circles arg{(u — 1)/(u + 1)] = £7/3.
This means that in (2)

lu—wlT'<KJu+ 117, ueyp |wi<l,

for some constant K.
In the construction of ¢ we can avoid the point z = 1. Together with the
regularity properties this means that y has finite length. On y we also have

|F(u) < exp|—Knju+ 1|77 (K = constant depending on q).

We now observe that the function x~'exp[—Knx~?] is increasing for
0 < x < (2Kn)Y%. For n>—[2G*(q)]™" and |u+ 1| < (—K/G*(g))"* we
consequently get

|Fu(w)l - fu + 1171 < (—G*(q)/K)"* exp[nG*(q)]-
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On the other hand, using (5) for |u + 1| > (—K/G*(q))¥? we obtain
[Fa() u™"| - Ju+ 17! < (=G*(9)/K)"* exp[nG*(q)].
In (2) this implies that
E,(f.) <K, exp[nG*(q)].

Since p,(Q) < KE,(f,) we consequently get

lim p,(Q)"" < exp G*(q)-
6. THE LOwER ESTIMATE WHEN ¢, =g
Returning to (1) in Section 3, by the Hahn—Banach theorem we obtain

b

@)= sup | (1,0 dut)

where the sup is taken over all measures du on [—1, 1| such that
(i) [t*du=0, k=0,.,n,
(i) fdul < 1.

For m =2, 3 we let du,, be given by

Znijhd,umzj hew(u) u"""du,
C

for all functions # continuous on [—1, 1]. As before y(u)= (u + u~')/2 and
C: the complex unit circle. Conditions (i) and (ii) are satisfied for du,,.
Hence for m=2,3

27p,(Q) >

JC F(u)-u"""™du

jF,,(u)u‘"‘”’du , (6)

where y is the optimal curve from Section 5, oriented to match the orien-
tation of C.
With the same transformations as those in the previous sections we have

F,(u)- u"=exp[nH(z)].

In the z-plane we have chosen the optimal curve ¢ so that close to a critical
point ¢ is an orthogonal trajectory of the level curves of Re H(z). This
means that Im H(z) is constant on ¢ close to a critical point. Let o be this
constant at the critical point g* in the upper half-plane.
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Pick ¢ > 0 small. Divide y into the three parts
Nn={u€yGzq< G*(q) — ¢},
y, = the part of y\y,, in Imu >0,
y, = the part of y\y,, in Im u 0.

Let

I, =j F,(u)u™"""du;

g

then it holds that
|1,] < K exp n[G*(q) — €] (7

Furthermore we notice that because of the symmetry

JF,,(u)u’"“’"du=J Fn(a)(a)—"-'"da=—j F(u)u™ """ du.

y2 »2

Consequently with
L= +| F,(w)u"""du
RS
we have
L,=2i ImJ’ F(u)u™"""du.
Y2
For ¢ sufficiently small we know that

F, (wu " =|F,(u)u"| exp(ina).

Let f(u) = arg u and du = |du| - exp(i6(u)) on y. Then

Imf F(u)u™""" du =J sin[na — mB(u) + o(u)] - |F, )u""""||dul.

72

There exists a constant £ > O such that at least for one of the two possible
values of m it holds that

|sin[na — mP(u) + d(u)]| > k>0

for u close to u(g*). This follows since f(u) # 0 (mod x) if u is not real,
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which we can assume if #(g*) is not real. On the other hand, if u(g*) is real
then a = 0 (mod 7), B(#) -+ 0 (mod x) and d(u) - n/2 (if g > 3 \/3/2) or 27/3

(if g =3 /3/2) as u - u(g*) on y,.
Since log |F,(u)u™"| is differentiable at u(g*), by standard saddle point
methods (see e.g., de Bruijn [2]) we get

max |I,|"" - exp G¥(g),  n— oo. (8)
m=24,

Returning to (6) we have

Qap, (@) 2|1 + L[V =L [T+ 13" - 1,

But (7) and (8) yield 7; ' - I, » 0 and consequently

lim p, ()" > lim | I,|"" = exp G*(q).

This concludes the proof of the theorem in case g, = g for all n.

7. THE GENERAL CASE

The simplest generalization of the proof in the previous sections is to the
case when g,— g € (0, o). Continuity arguments in the previous proof
immediately gives

lim p,(Q)"" = exp G*(g),

at least for g # 3/3/2. In case g=3/3/2 the lower estimate is not as
obvious.

The case q,— oo can be handled in the same manner. Since then
g ~1/q,-0 and G*(q,)—> 0 the upper estimate is trivial. The lower
estimate follows as in Section 6, since the optimal curves o, will approach
the imaginary axis as n— .

The cases g, — 0 and g, — 3 1/3/2 can be handled by a different method.
The approach is the same for the two cases so we just concentrate on g, — 0.
We observe that g*~g,">. (1 4i/3)/2. This gives G*(g,)—0 so the
upper estimate is trivial. It remains to prove that

lim p,(Q)" = 1.
To get a contradiction we assume that

lim p,(Q)"" < exp(—2a), for some a > 0.
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Then for a subsequence N’ of the natural numbers we can find r € R (Q)
such that

e —r(x)| <e ™, for all x> 0.

For every 0 < ¢ < a we get

Ie-(x~en) _ r(x) een| < e—(a-e)n’ x

Vv
o

Substituting ¢ = x — en we find

e = O] < e 1> e

where r*(t) = r(t + ne) exp ne. Letting @, = (¢ + ¢q,)7°, we therefore get

lim p,(Q)"" < exp (¢ — a).

But since ¢ + ¢, » ¢ we already know that
lim p,(Q.)"" = exp G*(e).

Hence for all e:0<¢e<a

G*(e)<e—a,

which is impossible since G*(¢) » 0 as ¢ » 0. Thus
lim p,(Q)"" = 1.

The general situation when ¢, does not tend to a limit now obviously follows
by looking at suitable subsequences. So the theorem is proved.

8. A GooD APPROXIMANT

Finally we further study the optimal situation ¢ = 1/1/2. In the approx-
imation of f, in Section 5 we used the Taylor polynomial }'% a, w* of order
n. Since we then used the mapping f~ f to get an approximation of f, it is
natural to analyze this mapping somewhat further. For |w| < 1 we have

1 ® wk

ﬂw)z_f Mduzz

° Kl gu.
2nile. u—w i 2m'JCf v u .
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By definition w(u) = (u + u~")/2 so we substitute u = exp(iv) and find

[ Sow()u*'du= ZiJ‘nf(cos v) cos kv

.1
= 2iJ S(x) T, (x)(1 — x*)~ "2 dx,
-1
where T,(x) = cos(n arccos x), i.e., the kth Chebyshev polynomial. Hence
~ ©
JwW)y=by+27'D bwh,
1

where b, is the kth Fourier—Chebyshev coefficient of f. From this fact we can
deduce that 27T, (w)=w, k>0, and T,=1. Thus the Taylor series of f
corresponds to the Fourier—Chebyshev series of f.

The function r,(x) that we can use to approximate e is then

n—x\/f),
n+xy2

where b, is the kth Fourier—Chebyshev coefficient of

rn(x):zkak (
0

n(t—1)
t+1)v2

From Section 5 we can also get a better estimate than that in our theorem,
namely,

Ja(t) =exp

le™*—r, (I <K(H2—1), x>0,

for some constant K.
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