Approximation of e^{-x} by Rational Functions with Concentrated Negative Poles

Jan-Erik Andersson
Department of Mathematics, University of Göteborg, Göteborg, Sweden

Communicated by Richard S. Varga
Received April 30, 1979

1. Introduction

In a number of papers uniform approximation of e^{-x} on $[0, \infty)$ by rational functions has been investigated. Because of its importance in certain numerical methods, Saff et al. [4] studied the degree of approximation by functions of the form $p(x)(x+n q)^{-n}, q>0, p$ polynomial of degree at most n. The method used in [4] gave the best order of approximation for $q=1$. In this case it was shown that the order is at most $O\left(2^{-n}\right)$.

Recently, Kaufman and Taylor [3] commented on this result. Among other things they asked if the choice $q=1$ is optimal. In this paper we shall prove a theorem that shows that it is not. The best choice is $q=1 / \sqrt{2}$ and then the degree of approximation is essentially of the order $(\sqrt{2}+1)^{-n}$.

2. Fomulation of the Result

We give a result that determines the asymptotic behaviour of the degree of approximation of e^{-x} on $[0, \infty)$ by functions of the form $p(x)\left(x+a_{n}\right)^{-n}$, for any sequence of $a_{n}>0$. For reasons that will be clear later we prefer to rewrite a_{n} as $n q_{n}$.

For a sequence $Q=\left(q_{n}\right)_{1}^{\infty}$ of positive real numbers let

$$
R_{n}(Q)=\left\{\text { functions of type } p(x)\left(x+n q_{n}\right)^{-n}, p \in \Pi_{n}\right\}
$$

Here and in the sequal Π_{n} denotes the class of polynomials of degree at most n. Furthermore, let

$$
\rho_{n}(Q)=\inf \left\{\sup _{x>0}\left|e^{-x}-r(x)\right|: r \in R_{n}(Q)\right\} .
$$

The following function G will be central:

$$
G(z, q)=\log \left|\frac{z-1}{z+1}\right|+q \operatorname{Re} z^{2}, \quad q>0 \text { and } z \in \mathbb{C} .
$$

In stating our theorem we need another
Definition. For $q>0$ let q^{*} be the root in $\operatorname{Im} z \geqslant 0$ of the equation

$$
q\left(z^{3}-z\right)+1=0
$$

that has smallest positive real part. Also let

$$
G^{*}(q)=G\left(q^{*}, q\right)
$$

The case when $q_{n}=q$ is fixed for all n is easiest to handle. In fact we shall prove that in this case

$$
\lim \rho_{n}(Q)^{1 / n}=\exp G^{*}(q)
$$

The minimum value of the limit is $\sqrt{2}-1$ and is obtained for $q=1 / \sqrt{2}$.
For the general situation we have the following result.
ThEOREM. (i) $\overline{\lim }_{n \rightarrow \infty} \rho_{n}(Q)^{1 / n}=\overline{\lim }_{n \rightarrow \infty} \exp G^{*}\left(q_{n}\right)$,
(ii) $\underline{\lim }_{n \rightarrow \infty} \rho_{n}(Q)^{1 / n}=\underline{\lim }_{n \rightarrow \infty} \exp G^{*}\left(q_{n}\right)$,
(iii) $\exp G^{*}(q) \geqslant \sqrt{2}-1$ for all $q>0$ and with equality if and only if $q=1 / \sqrt{2}$.

The proof of the theorem will be given first for $q_{n}=q \in(0, \infty)$, $n=1,2, \ldots$, and then generalized. In this special case we consequently must prove

$$
\lim \rho_{n}(Q)^{1 / n}=\exp G^{*}(q)
$$

3. Preliminary Transformations

In the definition of $\rho_{n}(Q)$ we perform the transformation

$$
t=(n q-x) /(n q+x)
$$

and find that

$$
\begin{equation*}
\rho_{n}(Q)=\inf \left\{\left\|f_{n}-p\right\|_{\{-1,1]}: p \in \Pi_{n}\right\} \tag{1}
\end{equation*}
$$

where $\left.f_{n}(t)=\exp [n q(t-1)) /(t+1)\right]$ and $\|\cdot\|$ denotes the sup-norm.

For technical reasons we prefer to approximate on the closed complex unit disc Δ. Andersson and Ganelius [1] discussed a way to reduce problems concerning rational approximation on more general sets, so-called Faber sets, to approximation on Δ. In our special case with polynomial approximation on $[-1,1]$ this can be done as follows.

Let \tilde{f} be continuous on Δ and analytic in the interior of Δ. Then we define

$$
E_{n}(\tilde{f})=\inf \left\{\|\tilde{f}-p\|_{\Delta}: p \in \Pi_{n}\right\}
$$

Now let $\psi(w)=\left(w+w^{-1}\right) / 2$, mapping the exterior of Δ onto the exterior of $[-1,1]$. For a continuous function f on $[-1,1]$ we define

$$
\tilde{f}(w)=\frac{1}{2 \pi i} \int_{C} \frac{f \circ \psi(u)}{u-w} d u, \quad w \in \mathbb{C} \text { and }|w|<1
$$

Here C is the positively oriented unit circle in \mathbb{C}. The crucial properties that we shall need are the following. The mapping $f \rightarrow f$
(1) is bounded (i.e., there is a constant K such that $\left.\|f\|_{[-1,1]} \leqslant K\|f\|_{\Delta}\right)$,
(2) maps $w^{n}, n \geqslant 0$, on a polynomial of degree n.

For details and further references we refer the reader to [1]. Let us just mention that property (1) is a consequence of

$$
\int_{C}\left|d_{w} \arg [\psi(r w)-t]\right|=2 \pi
$$

for $r>1$ and $t \in[-1,1]$.
From these observations it follows that

$$
\rho_{n}(Q) \leqslant K E_{n}\left(\tilde{f}_{n}\right)
$$

where f_{n} is as in (1). To simplify our notation we denote $F_{n}(u)=f_{n} \circ \psi(u)$. Thus we have

$$
F_{n}(u)=\exp \left[n q\left(\frac{u-1}{u+1}\right)^{2}\right]
$$

and

$$
2 \pi i f_{n}(w)=\int_{C} F_{n}(u)(u-w)^{-1} d u
$$

Let P_{n} be the Taylor polynomial of order $n-1$ at the origin for \tilde{f}_{n}. Then for $|w|<1$

$$
2 \pi i\left(f(w)-P_{n}(w)\right)=w^{n} \int_{C} F_{n}(u) u^{-n}(u-w)^{-1} d u
$$

and we find that

$$
\begin{equation*}
E_{n}\left(\tilde{f_{n}}\right) \leqslant \sup _{|w| \leqslant 1}\left|\int_{C} F_{n}(u) u^{-n}(u-w)^{-1} d u\right| . \tag{2}
\end{equation*}
$$

The function $F_{n}(u)$ is analytic in the whole extended plane except for $u=-1$. Hence the contour C in (2) can be replaced by other curves γ as long as they behave adequately at $u=-1$. We want to choose a curve so that $\max \left|F_{n}(u) u^{-n}\right|$ is as small as possible on it.

To simplify our discussion we make a final mapping,

$$
\begin{equation*}
z=(u-1) /(u+1), \quad \text { i.e., } \quad u=u(z)=(1+z) /(1-z) \tag{3}
\end{equation*}
$$

Then

$$
\left|F_{n}(u) u^{-n}\right|=\exp [n G(z, q)]
$$

and for later use we define for each $q>0$ a function H by

$$
H(z)=\log ((1-z) /(1+z))+q z^{2} .
$$

Consequently $G(z, q)=\operatorname{Re} H(z)$.

4. An Extremal Curve

Definition. Let Σ denote the class of all closed curves σ in the extended right half-plane that are symmetric with respect to the real axis and passes through the point of infinity.

For $\sigma \in \Sigma$ we let $g(\sigma)=\max \{G(z, q): z$ on $\sigma\}$ and

$$
\begin{equation*}
\hat{g}=\inf \{g(\sigma): \sigma \in \Sigma\} . \tag{4}
\end{equation*}
$$

Because of the behaviour of $G(z, q)$ as $z \rightarrow \infty$ we may assume that for R sufficiently large the set $\sigma \cap\{|z| \geqslant R\}$ consists of the two rays $z=t(1 \pm i \sqrt{3}), t \geqslant R / 2$. Hence we restrict our attention to the set $\{z:|z| \leqslant R, \operatorname{Re} z \geqslant 0\}$. On this set G has only one singular point, namely, $z=1$. Since $G(z, q) \rightarrow-\infty$ as $z \rightarrow 1$, it is possible to find curves $\sigma \in \Sigma$ such that $g(\sigma)=\hat{g}$.

Returning to $G(z, q)=\operatorname{Re} H(z)$ we find

$$
G_{x}^{\prime}=\operatorname{Re} H^{\prime}=2 \operatorname{Re}\left(\left(z^{2}-1\right)^{-1}+q z\right) \quad(z=x+i y),
$$

and consequently $G_{x}^{\prime}<0$ for x close to 0 . Therefore we can take our optimal σ so that it never meets the imaginary axis. Hence we can choose our optimal σ so that \hat{g} is obtained only at points where $\operatorname{grad} G=0$. By the Cauchy-Riemann equations these points are determined by $H^{\prime}(z)=0$, i.e.,

$$
1+q\left(z^{3}-z\right)=0 .
$$

Since $q>0$ this equation has always one negative root which we shall neglect in the sequel. The other two roots are in $\operatorname{Re} z \geqslant 0$ and are
-complex conjugated if $q<3 \sqrt{3} / 2$,
-both equal to $z=1 / \sqrt{3}$ if $q=3 \sqrt{3} / 2$,
-real, not equal, between 0 and 1 if $q>3 \sqrt{3} / 2$.
These points all yield saddle points for $G(z, q)$.
Later we shall use a steepest descent method to get the lower bound. Therefore we must choose the curves σ with some precaution.

In the first case we can take σ so that it follows the directions of steepest descent for $G(z, q)$ at least close to the critical points q^{*} and $\overline{q^{*}}$.

In the third case that function $G(z, q)$ has a local minimum along the real axis at the critical point with smallest real part. At this point q^{*}, the directions of steepest descent are orthogonal to the real axis. The second critical point gives a local maximum for $G(z, q)$ along the real axis, and the directions of steepest descent are along the real axis. Since σ is supposed to be symmetric with respect to the real axis, the optimal curve will never pass this second critical point.

In the remaining case, $q=3 \sqrt{3} / 2$ and $q^{*}=1 / \sqrt{3}$, we see that

$$
G(z, q)=G^{*}(q)+6^{-1} H^{(3)}\left(q^{*}\right) \operatorname{Re}\left(z-q^{*}\right)^{3}(1+o(1)),
$$

where $H^{(3)}\left(q^{*}\right)<0$. Hence from this point there are three different directions of steepest descent, namely, along the positively oriented real axis and with angles $\pm 2 \pi / 3$ with respect to this direction. The optimal curve can be taken to follow the last two directions. Owing to the symmetry, the first direction will just take us to $z=1$ and back.

Hence in all cases we find an optimal curve σ such that $\hat{g}=g(\sigma)=G\left(q^{*}, q\right)=G^{*}(q)$ and close to q^{*} (and $\overline{q^{*}}$) σ follows the directions of steepest descent for G. The regularity of G guarantees that σ can be taken at least piecewise smooth.

Part (iii) of our theorem now follows easily. The optimal curve σ must pass the ray $z=t(1+i), t \geqslant 0$. On this ray $G(z, q)=\log |(z-1) /(z+1)|$.

Fig. 1. The curve σ in the cases (a) $q<3 \sqrt{3} / 2$, (b) $q=3 \sqrt{3} / 2$ and (c) $q>3 \sqrt{3} / 2$. The saddle points and the ray $\arg z=\pi / 4$ are also indicated.

Hence for $q>0$,

$$
G^{*}(q)=g(\sigma) \geqslant \min \{G(z, q): z=t(1+i), t \geqslant 0\}=\log (\sqrt{2}-1) .
$$

The minimum value is obtained for $z=(1+i) / \sqrt{2}$. Therefore the only chance to get $G^{*}(q)=\log (\sqrt{2}-1)$ is that $q^{*}=(1+i) / \sqrt{2}$. This happens if and only if $q=1 / \sqrt{2}$ and thus (iii) in the theorem is proved.

5. The Upper Estimate when $q_{n}=q$

We now assume that $q_{n}=q>0$ for all n. The optimal curve σ from Section 4 is mapped back to the u-plane by (3). Thus we get a piecewise smooth curve γ on which

$$
\begin{equation*}
\left|F_{n}(u) u^{-n}\right| \leqslant \exp \left[n G^{*}(q)\right] . \tag{5}
\end{equation*}
$$

The behaviour of σ as $z \rightarrow \infty$ implies that γ approaches -1 along the circles $\arg [(u-1) /(u+1)]= \pm \pi / 3$.

This means that in (2)

$$
|u-w|^{-1} \leqslant K|u+1|^{-1}, \quad u \in \gamma, \quad|w| \leqslant 1,
$$

for some constant K.
In the construction of σ we can avoid the point $z=1$. Together with the regularity properties this means that γ has finite length. On γ we also have

$$
\left|F_{n}(u)\right| \leqslant \exp \left[-K n|u+1|^{-2}\right] \quad(K=\text { constant depending on } q) .
$$

We now observe that the function $x^{-1} \exp \left[-K n x^{-2}\right]$ is increasing for $0<x \leqslant(2 K n)^{1 / 2}$. For $n \geqslant-\left[2 G^{*}(q)\right]^{-1}$ and $|u+1| \leqslant\left(-K / G^{*}(q)\right)^{1 / 2}$ we consequently get

$$
\left|F_{n}(u)\right| \cdot|u+1|^{-1} \leqslant\left(-G^{*}(q) / K\right)^{1 / 2} \exp \left[n G^{*}(q)\right] .
$$

On the other hand, using (5) for $|u+1| \geqslant\left(-K / G^{*}(q)\right)^{1 / 2}$ we obtain

$$
\left|F_{n}(u) u^{-n}\right| \cdot|u+1|^{-1} \leqslant\left(-G^{*}(q) / K\right)^{1 / 2} \exp \left[n G^{*}(q)\right] .
$$

In (2) this implies that

$$
E_{n}\left(f_{n}\right) \leqslant K_{q} \exp \left[n G^{*}(q)\right] .
$$

Since $\rho_{n}(Q) \leqslant K E_{n}\left(f_{n}\right)$ we consequently get

$$
\overline{\lim } \rho_{n}(Q)^{1 / n} \leqslant \exp G^{*}(q) .
$$

6. The Lower Estimate when $q_{n}=q$

Returning to (1) in Section 3, by the Hahn-Banach theorem we obtain

$$
\rho_{n}(Q)=\sup \left|\int f_{n}(t) d \mu(t)\right|,
$$

where the sup is taken over all measures $d \mu$ on $[-1,1]$ such that
(i) $\int t^{k} d \mu=0, k=0, \ldots, n$,
(ii) $\|d \mu\| \leqslant 1$.

For $m=2,3$ we let $d \mu_{m}$ be given by

$$
2 \pi i \int h d \mu_{m}=\int_{C} h \circ \psi(u) \cdot u^{-n-m} d u,
$$

for all functions h continuous on $[-1,1]$. As before $\psi(u)=\left(u+u^{-1}\right) / 2$ and C : the complex unit circle. Conditions (i) and (ii) are satisfied for $d \mu_{m}$. Hence for $m=2,3$

$$
\begin{equation*}
2 \pi \rho_{n}(Q) \geqslant\left|\int_{C} F_{n}(u) \cdot u^{-n-m} d u\right|=\left|\int_{\gamma} F_{n}(u) u^{-n-m} d u\right|, \tag{6}
\end{equation*}
$$

where γ is the optimal curve from Section 5, oriented to match the orientation of C.

With the same transformations as those in the previous sections we have

$$
F_{n}(u) \cdot u^{-n}=\exp [n H(z)] .
$$

In the z-plane we have chosen the optimal curve σ so that close to a critical point σ is an orthogonal trajectory of the level curves of $\operatorname{Re} H(z)$. This means that $\operatorname{Im} H(z)$ is constant on σ close to a critical point. Let α be this constant at the critical point q^{*} in the upper half-plane.

Pick $\varepsilon>0$ small. Divide γ into the three parts

$$
\begin{aligned}
& \gamma_{1}=\left\{u \in \gamma: G(z, q) \leqslant G^{*}(q)-\varepsilon\right\}, \\
& \gamma_{2}=\text { the part of } \gamma \backslash \gamma_{1}, \text { in Im } u \geqslant 0, \\
& \gamma_{3}=\text { the part of } \gamma \backslash \gamma_{1}, \text { in Im } u \leqslant 0 .
\end{aligned}
$$

Let

$$
I_{1}=\int_{\gamma_{1}} F_{n}(u) u^{-n-m} d u
$$

then it holds that

$$
\begin{equation*}
\left|I_{1}\right| \leqslant K \exp n\left[G^{*}(q)-\varepsilon\right] . \tag{7}
\end{equation*}
$$

Furthermore we notice that because of the symmetry

$$
\int_{\gamma_{2}} F_{n}(u) u^{-n-m} d u=\int_{\gamma_{2}} F_{n}(\bar{u})(\bar{u})^{-n-m} d \bar{u}=-\int_{\gamma_{3}} F_{n}(u) u^{-n-m} d u
$$

Consequently with

$$
I_{2}=\int_{\gamma_{2}}+\int_{\gamma_{3}} F_{n}(u) u^{-n-m} d u
$$

we have

$$
I_{2}=2 i \operatorname{Im} \int_{\gamma_{2}} F_{n}(u) u^{-n-m} d u
$$

For ε sufficiently small we know that

$$
F_{n}(u) u^{-n}=\left|F_{n}(u) u^{-n}\right| \exp (i n \alpha)
$$

Let $\beta(u)=\arg u$ and $d u=|d u| \cdot \exp (i \delta(u))$ on γ. Then

$$
\operatorname{Im} \int_{\gamma_{2}} F(u) u^{-n-m} d u=\int_{\gamma_{2}} \sin [n \alpha-m \beta(u)+\delta(u)] \cdot\left|F_{n}(u) u^{-n-m}\right||d u| .
$$

There exists a constant $k>0$ such that at least for one of the two possible values of m it holds that

$$
|\sin [n \alpha-m \beta(u)+\delta(u)]| \geqslant k>0
$$

for u close to $u\left(q^{*}\right)$. This follows since $\beta(u) \neq 0(\bmod \pi)$ if u is not real,
which we can assume if $u\left(q^{*}\right)$ is not real. On the other hand, if $u\left(q^{*}\right)$ is real then $\alpha=0(\bmod \pi), \beta(u) \rightarrow 0(\bmod \pi)$ and $\delta(u) \rightarrow \pi / 2($ if $q>3 \sqrt{3} / 2)$ or $2 \pi / 3$ (if $q=3 \sqrt{3} / 2$) as $u \rightarrow u\left(q^{*}\right)$ on γ_{2}.

Since $\log \left|F_{n}(u) u^{-n}\right|$ is differentiable at $u\left(q^{*}\right)$, by standard saddle point methods (see e.g., de Bruijn [2]) we get

$$
\begin{equation*}
\max _{m=2,3}\left|I_{2}\right|^{1 / n} \rightarrow \exp G^{*}(q), \quad n \rightarrow \infty . \tag{8}
\end{equation*}
$$

Returning to (6) we have

$$
\left(2 \pi \rho_{n}(Q)\right)^{1 / n} \geqslant\left|I_{1}+I_{2}\right|^{1 / n}=\left|I_{2}\right|^{1 / n}\left|1+I_{2}^{-1} \cdot I_{1}\right|^{1 / n} .
$$

But (7) and (8) yield $I_{2}^{-1} \cdot I_{1} \rightarrow 0$ and consequently

$$
\underline{\lim } \rho_{n}(Q)^{1 / n} \geqslant \underline{\lim }\left|I_{2}\right|^{1 / n}=\exp G^{*}(q)
$$

This concludes the proof of the theorem in case $q_{n}=q$ for all n.

7. The General Case

The simplest generalization of the proof in the previous sections is to the case when $q_{n} \rightarrow q \in(0, \infty)$. Continuity arguments in the previous proof immediately gives

$$
\lim \rho_{n}(Q)^{1 / n}=\exp G^{*}(q)
$$

at least for $q \neq 3 \sqrt{3} / 2$. In case $q=3 \sqrt{3} / 2$ the lower estimate is not as obvious.

The case $q_{n} \rightarrow \infty$ can be handled in the same manner. Since then $q_{n}^{*} \sim 1 / q_{n} \rightarrow 0$ and $G^{*}\left(q_{n}\right) \rightarrow 0$ the upper estimate is trivial. The lower estimate follows as in Section 6, since the optimal curves σ_{n} will approach the imaginary axis as $n \rightarrow \infty$.

The cases $q_{n} \rightarrow 0$ and $q_{n} \rightarrow 3 \sqrt{3} / 2$ can be handled by a different method. The approach is the same for the two cases so we just concentrate on $q_{n} \rightarrow 0$. We observe that $q_{n}^{*} \sim q_{n}^{-1 / 3} \cdot(1+i \sqrt{3}) / 2$. This gives $G^{*}\left(q_{n}\right) \rightarrow 0$ so the upper estimate is trivial. It remains to prove that

$$
\underline{\lim } \rho_{n}(Q)^{1 / n}=1
$$

To get a contradiction we assume that

$$
\underline{\lim } \rho_{n}(Q)^{1 / n} \leqslant \exp (-2 a), \quad \text { for some } a>0
$$

Then for a subsequence N^{\prime} of the natural numbers we can find $r \in R_{n}(Q)$ such that

$$
\left|e^{-x}-r(x)\right| \leqslant e^{-a n}, \quad \text { for all } x \geqslant 0
$$

For every $0<\varepsilon<a$ we get

$$
\left|e^{-(x-\epsilon n)}-r(x) e^{\epsilon n}\right| \leqslant e^{-(a-\epsilon) n}, \quad x \geqslant 0
$$

Substituting $t=x-\varepsilon n$ we find

$$
\left|e^{-t}-r^{*}(t)\right| \leqslant e^{-(a-\epsilon) n}, \quad t \geqslant-\varepsilon n,
$$

where $r^{*}(t)=r(t+n \varepsilon) \exp n \varepsilon$. Letting $Q_{\varepsilon}=\left(\varepsilon+q_{n}\right)_{1}^{\infty}$, we therefore get

$$
\underline{\lim } \rho_{n}\left(Q_{\epsilon}\right)^{1 / n} \leqslant \exp (\varepsilon-a)
$$

But since $\varepsilon+q_{n} \rightarrow \varepsilon$ we already know that

$$
\underline{\lim } \rho_{n}\left(Q_{\varepsilon}\right)^{1 / n}=\exp G^{*}(\varepsilon)
$$

Hence for all $\varepsilon: 0<\varepsilon<a$

$$
G^{*}(\varepsilon) \leqslant \varepsilon-a,
$$

which is impossible since $G^{*}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Thus

$$
\underline{\lim } \rho_{n}(Q)^{1 / n}=1
$$

The general situation when q_{n} does not tend to a limit now obviously follows by looking at suitable subsequences. So the theorem is proved.

8. A Good Approximant

Finally we further study the optimal situation $q=1 / \sqrt{2}$. In the approximation of f_{n} in Section 5 we used the Taylor polynomial $\sum_{0}^{n} a_{k} w^{k}$ of order n. Since we then used the mapping $\tilde{f} \rightarrow f$ to get an approximation of f_{n} it is natural to analyze this mapping somewhat further. For $|w|<1$ we have

$$
\tilde{f}(w)=\frac{1}{2 \pi i} \int_{C} \frac{f \circ \psi(u)}{u-w} d u=\sum_{0}^{\infty} \frac{w^{k}}{2 \pi i} \int_{C} f \circ \psi(u) u^{-k-1} d u
$$

By definition $\psi(u)=\left(u+u^{-1}\right) / 2$ so we substitute $u=\exp (i v)$ and find

$$
\begin{aligned}
\int_{C} f \circ \psi(u) u^{-k-1} d u & =2 i \int_{0}^{\pi} f(\cos v) \cos k v \\
& =2 i \int_{-1}^{1} f(x) T_{k}(x)\left(1-x^{2}\right)^{-1 / 2} d x
\end{aligned}
$$

where $T_{k}(x)=\cos (n \arccos x)$, i.e., the k th Chebyshev polynomial. Hence

$$
\tilde{f}(w)=b_{0}+2^{-1} \sum_{1}^{\infty} b_{k} w^{k}
$$

where b_{k} is the k th Fourier-Chebyshev coefficient of f. From this fact we can deduce that $2 \widetilde{T}_{k}(w)=w^{k}, k>0$, and $\tilde{T}_{0}=1$. Thus the Taylor series of \tilde{f} corresponds to the Fourier-Chebyshev series of f.

The function $r_{n}(x)$ that we can use to approximate e^{-x} is then

$$
r_{n}(x)=\sum_{0}^{n} b_{k} T_{k}\left(\frac{n-x \sqrt{2}}{n+x \sqrt{2}}\right)
$$

where b_{k} is the k th Fourier-Chebyshev coefficient of

$$
f_{n}(t)=\exp \frac{n(t-1)}{(t+1) \sqrt{2}}
$$

From Section 5 we can also get a better estimate than that in our theorem, namely,

$$
\left|e^{-x}-r_{n}(x)\right| \leqslant K(\sqrt{2}-1)^{n}, \quad x \geqslant 0
$$

for some constant K.

References

1. J.-E. Andersson and T. H. Ganelius, The degree of approximation by rational functions with fixed poles, Math. Z. 153 (1977), 161-166.
2. N. G. de Bruisn, "Asymptotic Methods in Analysis," North-Holland, Amsterdam, 1958.
3. E. H. Kaufman, Jr., and G. D. Taylor, Uniform approximation with rational functions having negative poles, J. Approx. Theory 23 (1978), 364-378.
4. E. B. Saff, A. Schönhage, and R. S. Varga, Geometric convergence to e^{-z} by rational functions with real poles, Numer. Math. 25 (1976), 307-322.
